密级:公开

# 天津电气院 PROFINET 通讯板 用户说明书

天津电气科学研究院有限公司 智能装备研究所 软件研发部

# 目录

| 1 | 概述.   |         |                                     | 3  |
|---|-------|---------|-------------------------------------|----|
| 2 | 安装与设置 |         |                                     | 4  |
| 3 | 通讯    | 配置说明    | 明                                   | 5  |
| 4 | 使用    | TIA POR | RTAL V13 组态 S7-1516 和 ROFINET 通讯板通信 | 8  |
|   | 4.1   | 新廷      | 建工程                                 | 8  |
|   | 4.2   | 添加      | 加 PROFINET 通讯板 GSDML 文件             | 9  |
|   | 4.3   | 配置      | 置工程基本信息                             | 11 |
|   |       | 4.3.1   | 进入工程视图                              | 11 |
|   |       | 4.3.2   | 添加工程设备                              | 11 |
|   |       | 4.3.3   | 分配 PROFINET 通讯板设备名                  | 18 |
|   | 4.4   | 保存      | 存、编译、下载至 PLC                        | 20 |
| 5 | 版本:   | 记录      |                                     | 24 |

# 1 概述

感谢您使用天传技术 TAC1 变频驱动产品,并选用 TSC1-ID10 PROFINET 通讯板。

TSC1-ID10 PROFINET 通讯板是 PROFINET 现场总线适配卡,符合国际通用 PROFINET 以太网标准。该通讯板安装在 TAC1 系列变频器上,用于通过 PROFINET 把变频器连接到更高层的自动化系统。

TSC1-ID10 PROFINET 通讯板适用于于以下变频器:

表 1-1 TAC1 逆变器产品列表

| 型号           | 产品种类/电压等级         | 功率等级/  | 宽高深(mm)/重量(Kg)            |
|--------------|-------------------|--------|---------------------------|
| TAC1-110-I2A |                   | 110kW  |                           |
| TAC1-132-I2A |                   | 132kW  | 324×1320×410.5/90         |
| TAC1-160-I2A |                   | 160kW  |                           |
| TAC1-200-I2B |                   | 200kW  |                           |
| TAC1-250-I2B |                   | 250kW  | 368×1315×661/135          |
| TAC1-315-I2B | <b>举</b> 亦即(500)( | 315kW  |                           |
| TAC1-400-I2C | 逆变器/690V          | 400kW  | 725 \\ 4252 5 \\ 677 /240 |
| TAC1-450-I2C |                   | 450kW  | 725×1352.5×677/240        |
| TAC1-630-I2D |                   | 630kW  |                           |
| TAC1-800-I2D |                   | 800kW  | 024 5 × 4 604 × 555 /400  |
| TAC1-1M0-I2D |                   | 1000kW | 831.5×1601×555/400        |
| TAC1-1M2-I2D |                   | 1200kW |                           |

表 1-2 TAC1 逆变器产品列表

| 型号           | 产品种类/电压等级 | 功率等级  | 宽高深(mm)/重量(Kg)        |
|--------------|-----------|-------|-----------------------|
| TAC1-005-C1J |           | 5.5kW | 125 \/ 400 \/ 250 /16 |
| TAC1-007-C1J |           | 7.5kW | 135×490×350/16        |
| TAC1-011-C1Q |           | 11kW  | 170 × 600 × 250/20 5  |
| TAC1-015-C1Q |           | 15kW  | 170×600×350/20.5      |
| TAC1-018-C1K |           | 18kW  |                       |
| TAC1-022-C1K | 变频器/400V  | 22kW  | 250×600×350/29        |
| TAC1-030-C1K |           | 30kW  |                       |
| TAC1-037-C1S |           | 37kW  |                       |
| TAC1-045-C1S |           | 45kW  | 255×715×360/25        |
| TAC1-055-C1S |           | 55kW  |                       |
| TAC1-075-C1M |           | 75kW  | 270 × 900 × 200 /25   |
| TAC1-090-C1M |           | 90kW  | 370×800×390/35        |
| TAC1-110-C1A |           | 110kW |                       |
| TAC1-132-C1A |           | 132kW | 324×1320×410.5/95     |
| TAC1-160-C1A |           | 160kW |                       |
| TAC1-200-C1B |           | 200kW | 260 × 1215 × 661 /145 |
| TAC1-250-C1B |           | 250kW | 368×1315×661/145      |

TSC1-ID10 PROFINET 通讯板配套的 GSDML 文件为 "GSDML-V2.31-Tried-TCU1 -20170707.xml", 本手册以 TAC1 系列变频器为例介绍 PROFINET 通讯板使用方法。

#### 2 安装与设置

#### ■ 硬件结构图

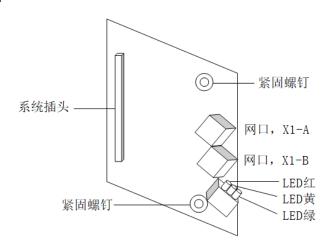



图 2-1 TSC1-ID10 PROFINET 通讯板硬件结构图

# ■ 端子说明

端子名称 硬件名称 功能说明 系统插头(排针) 用于连接变频器,位于板卡的背面。 Х3 用于指示 PRFOINET(PROFINET 通讯板 Н9 PLC 通信状态指示灯(绿色) 和 PLC) 通信状态。 用于指示变频器 (PROFINET 通讯板和 H10 变频器通信状态指示灯 (黄色) 变频器)通信状态。 电源指示灯(红色) 用于指示电源状态。 H11 X1-A 网口1 用于 PROFINET 通讯板和 PLC 连接。 X1-B 网口 2

表 2-1 TSC1-ID10 PROFINET 通讯板端子说明

### ■ 端口说明

TSC1-ID10 PROFINET 通讯板安装:

TSC1-ID10 PROFINET 通讯板设计为嵌入 TAC1 系列变频器中使用,安装前请关断变频器供电电源,变频器彻底停止工作后才能进行安装。在 TSC1-ID10 PROFINET 通讯板接入变频器后,请固定相应的螺钉,避免板卡受外部电缆拉力损坏。

RJ45 接口说明:

TSC1-ID10 PROFINET 通讯板采用与标准以太网 RJ45 型端口与 PROFINET 主站(PLC) 连接,其引脚信号与标准以太网定义一致,交叉线及直连线均可。

为保证通信稳定性,推荐采用超五类屏蔽双绞线类型网线。

#### ■ 指示灯

| 指示灯    状态     |      | 说明含义                        |  |
|---------------|------|-----------------------------|--|
| <b>由源松二</b> 炉 | 红色闪烁 | 系统状态正常。                     |  |
| 电源指示灯         | 常亮/灭 | 系统状态错误,请检查安装是否正确。           |  |
| 亦属現状二石        | 黄色闪烁 | PROFINET 通讯板和变频器之间通讯状态正常。   |  |
| 变频器指示灯        | 常亮/灭 | 通信错误,请检查安装是否正确。             |  |
|               | 绿色闪烁 | PROFINET 通讯板和 PLC 之间通讯状态正常。 |  |
| RPOFINET 指示灯  |      | PROFINET 通信状态错误。通过博图软件在线访问扫 |  |
| RPOFINET 1日小刈 | 常亮/灭 | 描设备,确认线缆连接是否正确,检查设备名/IP地    |  |
|               |      | 址与 PLC 程序组态配置是否一致。          |  |

表 2-2 TSC1-ID10 PROFINET 通讯板端子说明

# 3 通讯配置说明

#### ■ TSC1-ID10 PROFINET 通讯板与 PROFINET 主站通讯配置

将 TSC1-ID10 PROFINET 通讯板安装到 TAC1 变频器上之后,需要与 PROFINET 主站 正确接线,设置相关通讯配置,才能实现 PROFINET 通讯板与 PROFINET 主站的通讯,从 而实现变频器连接到更高层的自动化系统。

#### ■ PROFINET 网络拓扑结构

PROFINET 支持的网络拓扑结构包括总线型、星形、树型等,通过交换机可以实现多种组网方式。

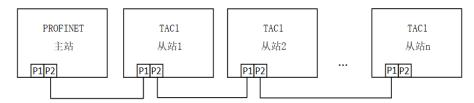



图 3-1 TSC1-ID10 PROFINET 通讯板硬件结构图

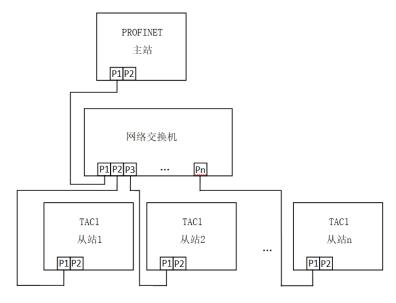



图 3-2 TSC1-ID10 PROFINET 通讯板硬件结构图

#### ■ PROFINET 通讯协议说明

表 3-1 PROFINET 通信模块

| 通信模块                         | 数据长度        | 组态说明  | 数据格式       |
|------------------------------|-------------|-------|------------|
| TRIED telegram, 64 bytes I_1 | 64 BYTE IN  | Slot1 | 4PKW+28PZD |
| TRIED telegram, 64 bytes O_1 | 64 BYTE OUT | Slot2 | 4PKW+28PZD |

说明: PKW 功能待开发,目前作为 4 个功能参数周期性读取/写入使用。

### ■ PZD 数据描述

PZD 数据主要完成主站与变频器进行周期性的数据交换,可以实时访问变频器数据(读取/写入)。通过变频器配置选择通讯数据,具体功能如下:

- 1、实时给定变频器控制字、设定频率。
- 2、实时读取变频器状态字、运行频率。
- 3、变频器与 PROFINET 主站之间其它参数的实时交互。

表 3-2 PROFINET 数据交互格式

| 主站发送数据                       |        |         |              |  |  |  |
|------------------------------|--------|---------|--------------|--|--|--|
| 4PKW(功能=PZD) PZD1 PZD2 PZD3- |        |         |              |  |  |  |
| 变频器参数实时更改                    | 变频器控制字 | 变频器设定频率 | 变频器功能参数实时更改  |  |  |  |
| 变频器响应数据                      |        |         |              |  |  |  |
| 4PKW(功能=PZD)                 | PZD1   | PZD2    | PZD3- PZD 28 |  |  |  |
| 变频器参数实时读取                    | 变频器状态字 | 变频器运行频率 | 变频器功能参数实时读取  |  |  |  |

#### ■ 主站发送数据描述

表 3-3 变频器发送数据 PZD 描述

| PZD1       | 变频器控制字           |                 |  |
|------------|------------------|-----------------|--|
|            | 01: OFF1 命令      | 09: 点动 1 命令     |  |
|            | 02: OFF2 命令 (急停) | 10: 点动 2 命令     |  |
|            | 03: OFF3 命令 (快停) | 11: PLC 控制命令有效位 |  |
|            | 04: 使能命令         | 12: 顺时针旋转命令     |  |
|            | 05: 斜坡函数发生器封锁命令  | 13: 逆时针旋转命令     |  |
|            | 06: 斜坡函数发生器保持命令  | 14: 电动电位计增加命令   |  |
|            | 07: 设定值使能命令      | 15: 电动电位计减小命令   |  |
|            | 08: 故障确认命令       | 16: 外部故障 1 命令   |  |
| PZD2       | 电机实际运行频率         | ,               |  |
| PZD3~PZD28 | 实时读取主站数据,配置方式见   | l PZD 数据配置      |  |

### ■ 变频器响应数据描述

■ 表 3-4 变频器响应数据 PZD 描述

| PZD1       | 变频器状态字       |              |  |
|------------|--------------|--------------|--|
|            | 01: 开机准备     | 09: 开机准备     |  |
|            | 02: 运行准备     | 10: 运行准备     |  |
|            | 03: 运行       | 11: 运行       |  |
|            | 04: 故障       | 12: 故障       |  |
|            | 05: 关机 OFF2  | 13: 关机 OFF2  |  |
|            | 06: 关机 OFF3  | 14: 关机 OFF3  |  |
|            | 07: 开机封锁     | 15: 开机封锁     |  |
|            | 08: 报警       | 16: 报警       |  |
| PZD2       | 电机实际运行频率     |              |  |
| PZD3~PZD28 | 实时读取主站数据,配置为 | 方式见 PZD 数据配置 |  |

PROFINET 通讯板支持 64 byte I/64 byte O。注意 IO 模块组态顺序与位置。

其中,64 byte I 对应 4PKW+28PZD,4PKW 对应低压变频器参数 P739.5~P739.8,28PZD 对应低压变频器参数 P734.1~P734.28;

同样,64 byte O 对应 4PKW+28PZD,4PKW 对应低压变频器参数 K3051~K3054,28PZD 对应低压变频器参数 K3001~K3028。

当 PZD1 BIT10=1 时, PLC 下发数据有效。

#### ■ 通讯故障与报警

如果 TCU1 控制器与 PLC 之间 PROFINET 通讯故障,相应的故障或报警会显示在 TOP1 面板上。

表 3-5 PROFINET 通讯故障

| 故障号  | 故障含义    | 故障原因               | 解决措施              |
|------|---------|--------------------|-------------------|
|      |         | 在报文故障时间内,从 PLC 收不到 | 检查                |
| F082 | DN 海江井亭 | 新的过程数据。            | 1.PROFINET 通讯板的连接 |
| F062 | PN 通讯故障 |                    | 2.P722 参数         |
|      |         |                    | 3.更换 PROFINET 通讯板 |

表 3-6 PROFINET 通讯报警

| 报警号  | 报警含义          | 报警原因                                                               | 解决措施                                    |
|------|---------------|--------------------------------------------------------------------|-----------------------------------------|
| A083 | PN 通讯中断<br>报警 | 不能从 PN 主站接收有用或无效的数据 (例如,完整的控制字 STW1 = 0)。P722 不等于 0 时会触发故障信息 F082。 | 1. 检查 PN 通选电缆是否插入 PN 主站/从站,分配不等于 0 的 值到 |

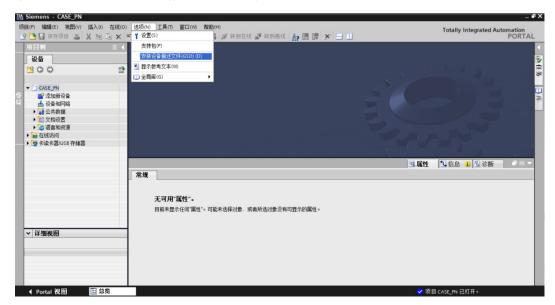
# 4 使用 TIA PORTAL V13 组态 S7-1516 和 ROFINET 通讯板通信

下面将详细介绍使用西门子 TIA PORTAL V13 工程工具组态 S7-1516 PLC 和PROFINET 通讯板。以西门子 PLC S7-1516 为例进行详细描述。S7-300、S7-400 以及S7-1200 等 PROFINET 接口的 PLC,其工程组态和配置过程同样适用。

# 4.1 新建工程

打开 TIA Portal 工程组态软件,点击"创建新项目",




上图,设置"项目名称","路径","作者","注释",点击"创建"按钮,



上图,点击"打开项目视图",



# 4.2 添加 PROFINET 通讯板 GSDML 文件



上图,点击选项->安装设备描述描述文件(GSD),



上图,选择 GSD 文件路径,点击安装。



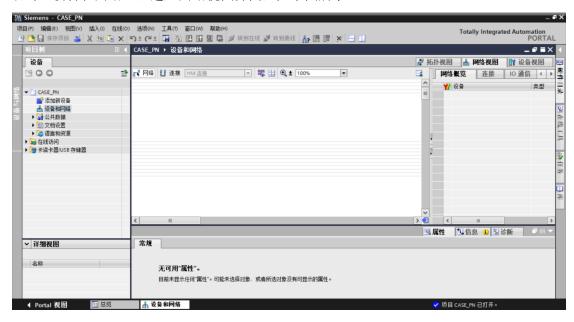
上图,提示安装不可逆,选择确定,



上图,点击"关闭"



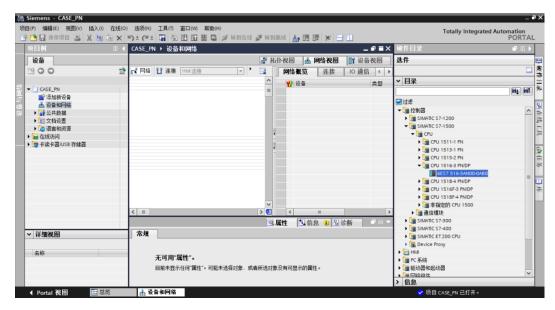
上图,更新硬件目录。


# 4.3 配置工程基本信息

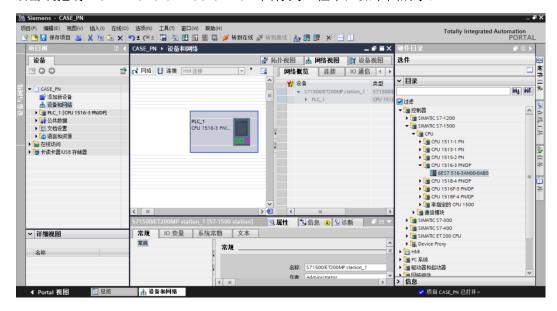
# 4.3.1 进入工程视图

TIA PORTAL V13 新建工程的工程视图如下所示:



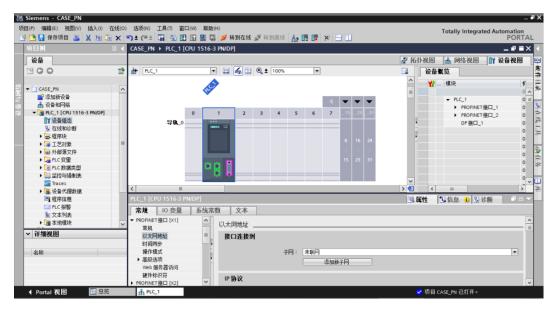

双击"设备和网络",进入网络视图界面,如下图所示:



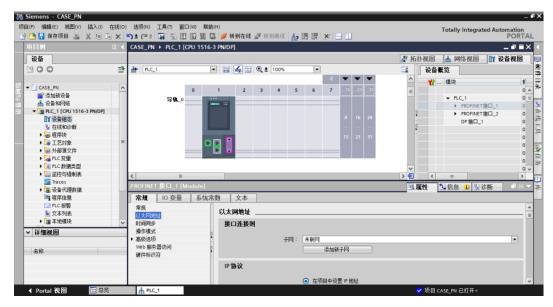

# 4.3.2 添加工程设备

# 4.3.2.1 添加 S7-1516 PLC 到工程视图

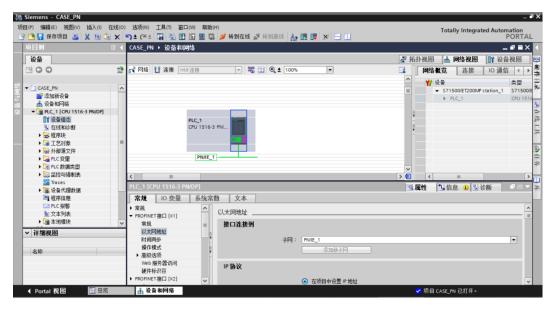
在硬件目录中, 选择 控制器->SIMATIC S7-1500->CPU->CPU1516-3 PN/DP -> 6SE7 516-3AN00-0AB0,



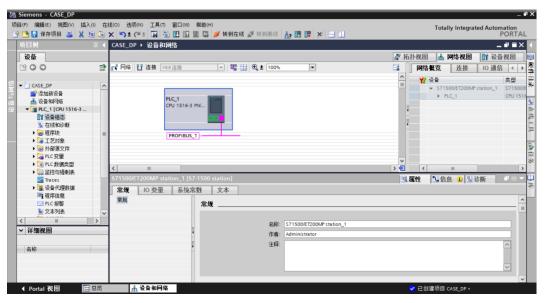

双击或拖动 "6SE7 516-3AN00-0AB0" 图标到工程中,如下图所示:




#### 4. 3. 2. 2 添加 PROFINET 通信子网络


在"Project Tree"中,单击"PLC 1[CPU 1511-1 PN]",双击"设备组态",如下图所示:

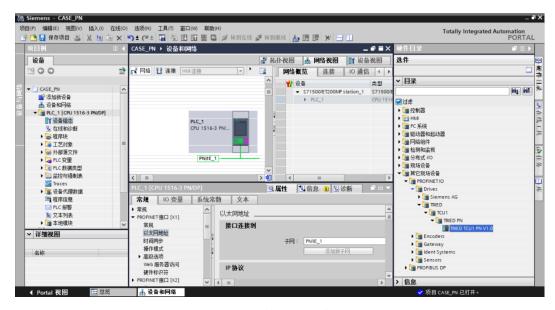



双击中间 X1 网口,进入配置界面

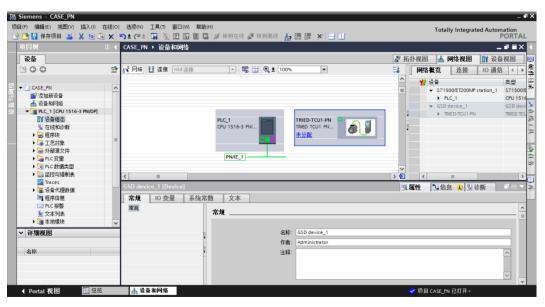


如上图,点击添加新子网,添加 PROFINET 网络。添加完毕后,点击网络视图标签,

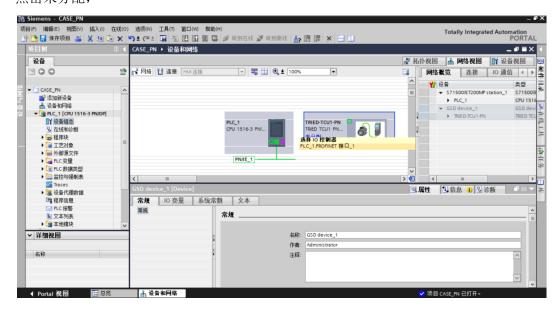



如上图,PLC\_1 已经添加 PN/IE\_1 自网络。



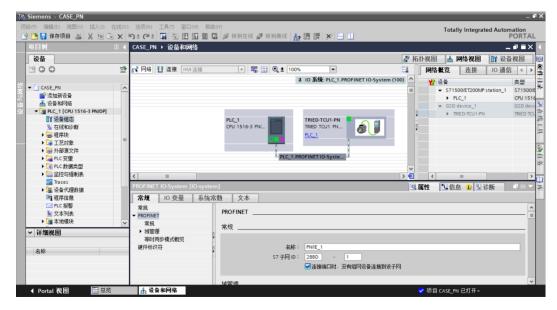

上图,切换到网络视图,显示已添加子网。

#### 4.3.2.3 添加 PROFINET 通讯板到工程中


在硬件目录,点击其他现场设备->PROFINET IO->Drives->TRIED->TCU1->TRIED PN -> TRIED TCU1 PN V1.0,

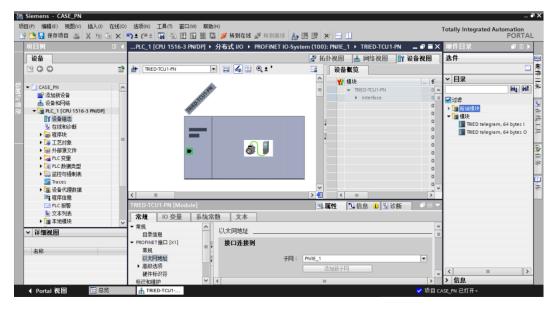


双击或拖动 "TRIED TCU1 PN V1.0"图标到工程中,如下图所示:

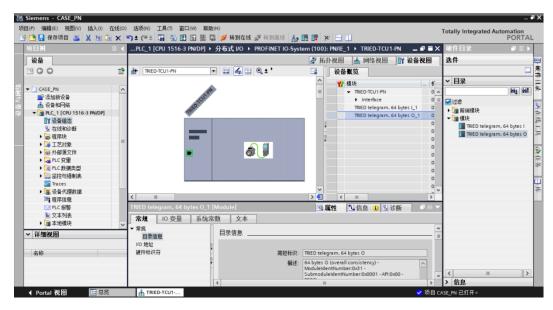



点击未分配,




共24页 第15页

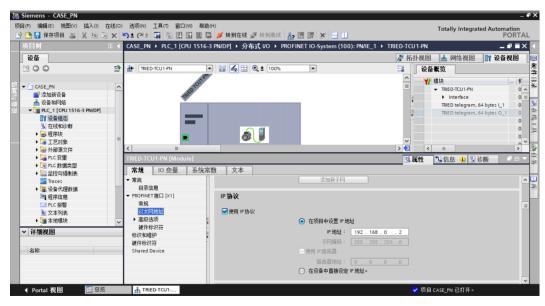
选择选择 "PLC\_1.PROFINET 接口\_1", P 通讯板与 PLC 连接到同一个 PROFINET 网络中,如下图所示



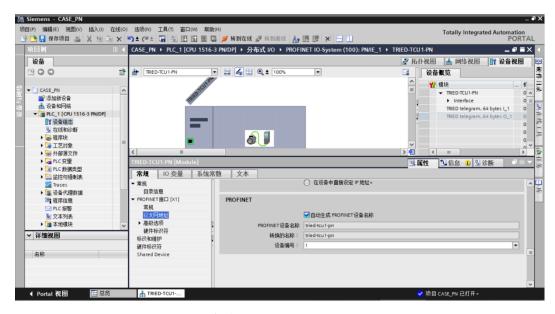

#### 4. 3. 2. 4 添加 DP 通讯板 I/O 子模块

双击 TRIED-TCU1-PN, 进入设备视图页面,



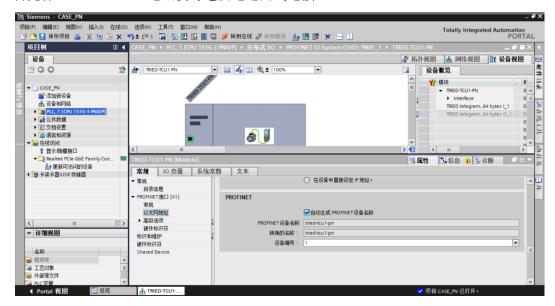

展开右侧硬件目录->模块,依次双击或拖动"TRIED telegram, 64 bytes I""TRIED telegram, 64 bytes O"




注意 IO 添加 (顺序和位置) 必须与图片所示一致。

# 4. 3. 2. 5 配置 PROFINET 通讯板参数

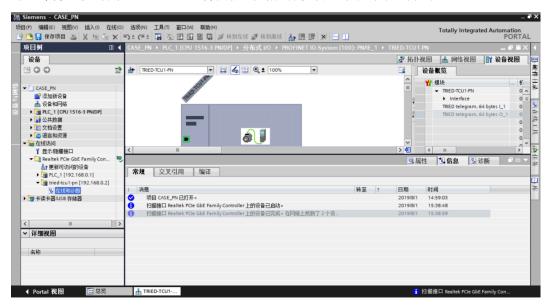
PROFINET 通讯板 IP 地址设定,如下图所示



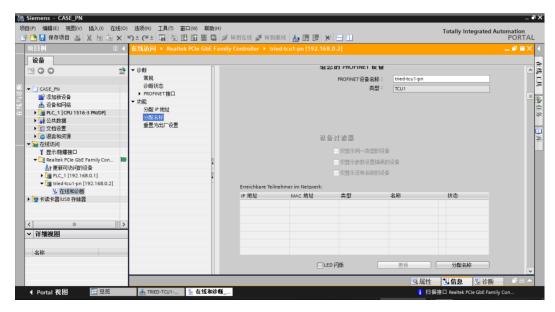

PROFINET 通讯板设备名称设定,如下图所示



# 4.3.3 分配 PROFINET 通讯板设备名


首先保证 PROFINET 通讯板与电脑通过网线连接,




点击左侧,在线访问,显示本机物理网卡,点击"更新可访问的设备"。



耐心等待一段时间, TIA Portal 将扫描到的所有设备显示在下拉列表中。



展开 tried-tcu1-pn,双击"在线和诊断",如下图所示

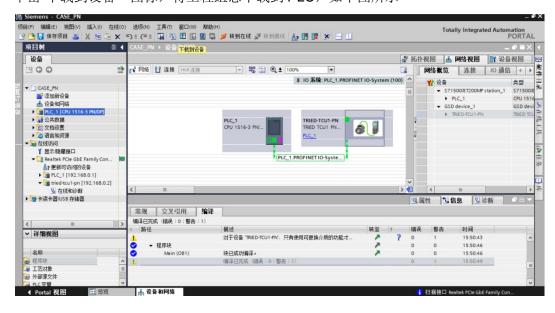



选择->功能->分配名称->PROFINET设备名称,输入设备名称,点击分配名称。 注意,输入的设备名称和组态必须保持一致。

# 4.4 保存、编译、下载至 PLC


选择 PLC\_1[CPU 1516-3 PN/DP],点击保存项目按钮,如下图所示



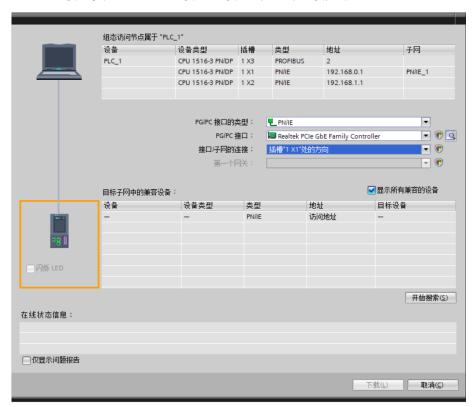

选择 PLC 1[CPU 1516-3 PN/DP], 右键选择->编译->硬件和软件, 如下图所示



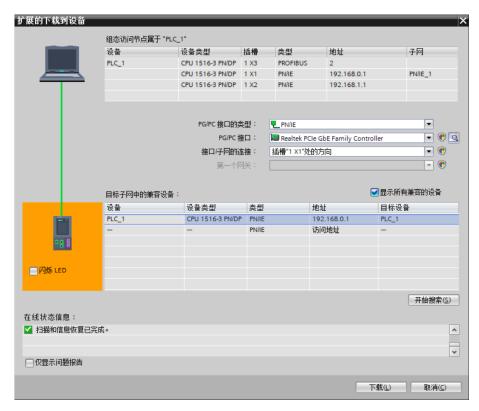
编译完成,如下图所示



单击"下载到设备"图标,将工程组态下载到PLC,如下图所示




共24页 第21页


#### 弹出以下界面



选择,PG/PC接口类型,PG/PC接口,接口/子网的连接如下,



点击开始搜索,



选择 PLC\_1,点击下载。

# 5 版本记录

| 日期       | 修改内容       | 修改人   |
|----------|------------|-------|
| 20190801 | 初稿         | 闫菲    |
| 20200429 | 修改部分说明     | 闫菲    |
| 20200523 | 修改 1、2、3 章 | 闫菲、张策 |