首页

当前您的位置: 首页 > 学术讲座 > 正文

【11月10日】Bifurcation analysis in vector-borne disease models with delays

发布日期:2023-11-10点击: 发布人:统计与数学学院

报告题目:Bifurcation analysis in vector-borne disease models with delays

主讲人:范桂红教授(美国哥伦布州立大学)

时间:2023年11月10日(周五)20:00 p.m.

腾讯会议:971749850

主办单位:统计与数学学院

摘要:Vector borne disease is a type of disease which is spread by vectors like mosquitoes or ticks and can infect human beings. Typical vector borne-disease includes West Nile virus, Lyme Disease, and Malaria etc. In this talk, we will talk about the modeling study of West Nile virus and Lyme Disease using delay differential equations. We used delay as our bifurcating parameters in both system we proposed and found interesting bifurcation results in both models including period doubling bifurcation, and fold bifurcation of period solutions as well as the existence of a bi-stability in the form of a boundary periodic solution and a positive periodic solution. For the tick’s model, we obtained the global bifurcation of the system using delay as the bifurcation parameters. The investigation on the complexity of the dynamical system offers a potential pathway to reveal the even more complicated transmission dynamics of vector-borne disease in reality. At the end, I will briefly introduce our recently finished a modeling work on CORVID-19.

主讲人简介:

范桂红,女,教授,分别于2004年和2009从加拿大麦克马斯特大学(McMaster University)获得应用数学硕士学位和理学博士学位。于2009年2月至2011年八月在约克大学(York University)做博士后,2011年9月-2013年6月在亚利桑那州立大学(Arizona State University)做访问教授(Visiting Assistant Professor). 从2013年7月起,任教于美国哥伦布州立大学,现担任数学系系主任。主要研究兴趣为泛函微分方程理论及其在生物数学中的应用,特别是时间滞后系统在媒介传播疾病中的建模,理论分析,及其优化控制。具体的研究课题包括以蚊子为媒介的西尼罗病的传播及其预防,以蜱虫为媒介的莱姆病在全球暖化下的影响。已在Journal of Dynamics and Differential Equations, Journal of Mathematical Biology, Journal of Differential Equations, One Health, Transboundary and Emerging Disease等国际刊物发表论文30余篇。曾在美国国家自然科学基金与美国女性数学会联合的“Mentoring Travel Grant"支持下在Nimbio访学科研一个月。积极参与各种学术交流和合作,多次被邀请在微分方程方向的主要会议作学术报告。作为合作组织者,多次向美国数学年会(JMM),生物数学年会(SMB),和SIAM年会,组织小组报告 (Scientific Special Sessions)。